Decentralized AI + science



"Metascience is the use of scientific methodology to study science itself. Metascience seeks to increase the quality of scientific research while reducing inefficiency."

Metascience is the study of the methods and procedures used in scientific research. It is concerned with the identification and characterization of the basic elements of scientific inquiry, and with the ways in which these elements interact to produce reliable knowledge.

Metascience is not primarily concerned with the interpretation or justification of scientific theories, as philosophy of science is. Rather, its focus is on the study of scientific methods and procedures, and on the ways in which they can be improved.

There are four main goals of metascience:

  1. To identify the basic elements of scientific inquiry
  2. To characterize the ways in which these elements interact
  3. To determine the conditions under which scientific knowledge is produced
  4. To develop ways of improving the quality and reliability of scientific research

Science Progress

Science productivity could be further improved. Focused Research Organizations and ideas like Private ARPA show one potential solution. This type of organization starts with a goal in mind and works backward to get there. The core idea is that sometimes scientific progress requires putting existing building blocks together with a bigger engineering effort to realize them.  

Reproducibility Crisis

The reproducibility crisis in science is a problem that has been increasing in recent years. Scientists are finding it harder and harder to reproduce the results of their experiments, and this is having a major impact on the progress of science.

There are a number of reasons for this crisis. One is that experiments are becoming more and more complex, making it harder to control all the variables. Another is that there is increasing pressure on scientists to publish their results, which can lead to them cutting corners in their experiments.

However, there are ways to solve this problem. One is to improve the way experiments are designed, so that they are more reproducible. Another is to provide more funding for replication studies, which are essential for confirming the results of experiments.

The reproducibility crisis in science is a serious problem, but it is one that we can solve. By taking steps to improve the design of experiments and to fund replication studies, we can ensure that science progresses in a robust and reliable way.

Some foundational research might be fundamentally flawed or outright fabricated, which is why we progress in ensuring important, foundational science successfully reproduces might be fundamental to overall scientific progress.


Vision for Metascience by Kanjun and Michael Nielsen

The social processes of science can be changed in many ways. Some examples of ways to change the social processes of science include:

  1. Improving peer review
  2. Changing how grants are awarded
  3. Selecting people differently to become scientists
  4. Creating new research institutions
  5. Decentralizing change
  6. Aligning change with what is best for science and humanity
  7. Creating a more structurally diverse ecosystem for doing science



Applied positive meta-science by José Ricon; Summary

  1. Finding more building blocks: better scientific tools, models, datasets etc.
  2. Tools for (scientific) thought: better tools for all steps of science
  3. Time is all you need? Freeing up scientists time from grants, administrative and manual work etc.
  4. Various proposals to improve science: Software, Tooling, New Institutions, Funding mechanisms, Activities and norms


Outcome Graphs

The Outcomes Graph is a knowledge base that logs market and scientific research findings and points to the optimum path toward applying science to societal outcomes. The system is designed to recognise the important nodes and relationships in order to characterise outcomes with precision and granularity.

  1. The Outcomes graph is a tool for representing the state of the applied knowledge frontier, gauging critical pathways and bottlenecks, and finding opportunities to move the frontier forward through venture creation.

  2. The Outcomes graph is a way of representing knowledge that is composed of nodes (outcomes) and the relationships between them. These relationships can be logical (e.g. a constraint enables a solution) or dynamic (e.g. the AND/OR operators between outcomes).

  1. The Outcomes graph can be used to identify optimal paths to achieving high-impact ventures, by understanding the Necessity and Sufficiency of outcomes.

  2. The Outcomes graph can also be used to discover opportunities for combinatorial innovation, by identifying possible combinations of knowledge that have a high probability of achieving outcomes across completely unrelated knowledge silos.  

Discourse Graphs

In order to make progress in science, it is important for scientists to synthesize and integrate existing knowledge about a scientific problem in order to generate new insights. Synthesis can take many forms, such as a theory, a literature review, or a research proposal, and can be a powerful tool for choosing effective studies and operationalizations. Synthesis is particularly important for tackling problems that cannot be addressed through decisive experimental tests, and may be necessary for scientific progress to be possible at all. An example of the power of synthesis in accelerating scientific progress is the work of Esther Duflo, who was awarded a Nobel Prize for her synthesis of problems in developmental economics.


Tech Trees

“While Civilization is just a game, the framework of tech trees can be helpful for thinking about scientific progress in the real world. Every technology can be seen through the lens of the foundational research that made it possible and the future discoveries it enables. However, there is one major difference between the game and reality: In the game, you can scroll to the end of the tech tree to decide whether going down a particular branch will pay dividends in the future. In the real world, the future is unknown, so it’s up to us to imagine new technologies.” –


Impact Certificates: HyperCerts

Hypercerts are a new primitive for public goods funding that enables retroactive funding. This is done by creating a data layer of impact claims that can be retrospectively funded by organizations or individuals. Hypercerts are agnostic about the mechanisms by which they are funded, and this enables experimentation with different funding models. Retroactive funding provides incentives for creators to take on public goods projects with a potentially high, but uncertain, impact. It also creates a more efficient market by back-propagating signals on what outcomes were impactful post-hoc.





Science is broken visualization by José Ricon

Science is broken graphic

José Ricons Appendix: A collection of various proposals to improve science

When I started writing this post I tried to think of some high level categories for all the “fix science” proposals. Some of these are discussed in earlier posts, see Science Funding.



New institutions

Funding mechanisms


Activities, norms